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Abstract
A controversy about the conductance through single atoms still exists. There are many
experiments where values lower than the quantum unity G0 = 2e2/h have been found
associated to Kondo regimes with high Kondo temperatures. Specifically in the Pd single atom
contact, conductance values close to G0/2 at room temperature have been reported. In this work
we propose a theoretical analysis of a break junction of Pd where the charge fluctuation in the
single atom contact is limited to the most probable one: d10 ↔ d9. The projected density of
states and the characteristics of the electron transport are calculated by using a realistic
description of the interacting system. A Kondo regime is found where the conductance values
and their dependence on temperature are in good agreement with the experimental trends
observed in the conduction of single molecule transistors based on transition metal coordination
complexes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Atomic sized contacts have been made possible through
techniques such as controllable break junctions and scanning
tunneling microscopy, and the properties of such atomic
contacts have been studied for many different magnetic
and nonmagnetic metals [1]. In the ballistic regime the
conductance of these junctions is described by the Landauer
formula,

G = G0

∑

i

Ti (1)

where the summation is extended to all the available channels
traversing the atom contact; Ti is a number between 0 and 1
for the transmission of the i th-channel, and G0 = 2e2/h is
the quantum conductance assuming spin degeneracy, e being
the elemental charge and h Planck’s constant. In the case
in which the degeneracy is removed, the channels have to be
redefined for each spin and each of these carries up to G0/2.
Also when the conductance is dominated by a single orbital

channel and a strong Coulomb interaction completely blocks
transport through one of the spin subchannel, it is expected that
there will be a conductance value close to a half of G0.

Several claims of the observation of half-integer conduc-
tance quantization for both magnetic and nonmagnetic metals
have appeared [2–5], but there are also many works that con-
tradict these observations [6–8]. As has been largely discussed
in the literature, the number of channels available in a one atom
contact is determined by the valence of the metal, and the trans-
mission of each channel is influenced by parameters such as the
number of neighbors, the bond distance, and the symmetry of
the valence orbitals [9–11]. For s-type metals such as Au the
electronic transport through a single atom will be due to a sin-
gle channel with a transmission close to unity, but this is not the
case for transition metals with partial occupation of d-orbitals,
where the combinations of all channels with different transmis-
sions will contribute to determine a conductance equal to some
fractional number of G0.
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In this work we will analyze atomic sized contacts of
Pd. There is experimental evidence showing that Pd breaks
essentially at the level of a single atom [5, 12], but up to
now there seems to be a controversy about the characteristic
conductance of a Pd single atom contact (SAC). Rodrigues
et al [5] claim to have measured a half quantization of the
conductance at room temperature, compatible with a fully
polarized conduction channel, while other authors report a
conductance smaller than one and close to G0/2 only when the
contact is exposed to gas molecules [6, 8]. On the other hand,
experiments based on scanning tunneling spectroscopy have
detected Kondo resonances with large Kondo temperatures in
metal transition atoms adsorbed in metal surfaces [13, 14],
and in the conduction of single-molecule transistors based
on transition metal coordination complexes [15, 16]. In the
first case it has also been reported that there is a pronounced
dependence of the Kondo resonance with the d-shell occupancy
of the transition metal adsorbate in such a way that it is largest
for atoms near to the ends of the 3d row. The question is, can
Pd SAC present Kondo resonance features in some appropriate
break junction process? We propose in this work a theoretical
situation based on a break junction geometry not far from the
reality [5, 12], and where the most probable d10–d9 charge
transition is considered in the Pd SAC in the case of low
values of the applied bias potential. A model Hamiltonian
is proposed that includes the conductance channels according
to a strong correlation effect that limits the charge fluctuation
to only one electron, and the Keldysh Green functions are
used for calculating the electron transport process [17]. The
projected local density of states on the Pd atom between the
two Pd surface contacts, and the characteristics of the electron
transport when a bias voltage is applied, are calculated by using
a realistic description of the electronic structure of the Pd leads
and of the atom-lead interaction parameters.

2. Theory

The interacting system is shown in figure 1. We identify
three subsystems: the left lead (L), the SAC and the right
lead (R) (see the inset). The two leads are assumed to be
pyramidal structures grown in the [100] direction. The local
density of states (LDOS) on the outermost atom of each lead
is shown in figure 1. It was calculated by using the Fireball
code [18] which is an ab initio local density approximation
(LDA)-based approximation to the electronic problem. In this
figure the energy level of a hole is also indicated, added to
the zero hole configuration of the Pd central atom (d10–d9

electronic transition). The d-orbitals are assumed degenerated
by neglecting the crystalline field effect.

2.1. Model Hamiltonian

The Hamiltonian includes the following five terms:

H = HL + HR + HSAC + HL−SAC + HR−SAC (2)

where HL(R) = ∑
k,σ εkL(R)n̂kL(R),σ corresponds to the non-

perturbed states of the contact surfaces with energy εkL(R)

and occupation number operator n̂kL(R),σ = ĉ+
kL(R),σ ĉkL(R),σ .

Figure 1. Local density of states on the end atom of the tip. The sum
of the diagonal terms (black solid line) and the sum of p (gray solid
line) and s (gray dashed line) band states are shown. A scheme of the
device is also indicated and the hole (electron) transition process
used in our proposal.

The electrons in the leads are assumed to be noninteracting
except for an overall self-consistent potential, by considering
the typical experimental geometry in which the leads rapidly
broaden into metallic contacts. The occupation, for each
contact, is determined by an equilibrium distribution function
established before the tunneling matrix elements are turned
on [19]. It is assumed that the leads interact only through the
Pd SAC.

The Pd single atom electronic configurations according
to the considered most probable d10–d9 charge fluctuation are
written by using a hole description in which we deal with
the d0–d1 transition (see figure 1). In this hole picture, and
considering the five-fold degeneration of d-orbitals, we have
the following states |S, M〉 classified by the total spin S and its
projection M :

d0 ⇒ |0, 0〉 = |00000〉 (zero hole) (3)

d1 ⇒ |1/2, σ 〉 = 1√
5
[|σ0000〉 + |0σ000〉 + |00σ00〉

+ |000σ0〉 + |0000σ 〉] (one hole) (4)

and where σ can be either 1/2 or −1/2. By using
the projection operators [20] for these selected atomic
configurations we can write:

HSAC = ε0|0, 0〉〈0, 0| +
∑

σ

ε1/2|1/2, σ 〉〈1/2, σ |. (5)

In the present case the considered Pd charge configura-
tions correspond to either a neutral atom or positive ion Pd+.
We are assuming that the Pd++ ion configuration will be much
less probable for not very large values of the bias potential, be-
cause of the low E(d9) − E(d8) energy value relative to the
Fermi level of the leads. This means, in the hole picture, two
strongly correlated degenerated spin states restricted to a sin-
gle occupation. Nevertheless in this particular case the same
results can be obtained by using a slave-boson approach to the
Anderson model [21], the projection operator technique allows
us to select in a clear way all the atomic configurations in-
volved in more complex problems related with charge and spin
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fluctuations [22]. The interaction terms, consistently with the
Anderson model Hα−SAC = ∑

k,σ,d[Vkα,dĉ+
kα,σ ĉd,σ + c.c], are

constructed by taking into account that:
∑

k,σ,d

Vkα,dĉ+
kα,σ ĉd,σ |1/2, σ 〉 =

∑

k,σ

Ṽkα ĉ+
kα,σ |0, 0〉

with α = L, R (6)

where Ṽkα = 1/
√

5
∑

d=1−5 Vkα,d has been defined, Vkα,d

being the hopping term between the d-orbitals of the Pd
SAC and the k-band states of the lead (α). According to
equation (6), the interaction term can be written as:

Hα−SAC =
∑

k,σ

[Ṽkα ĉ+
kα,σ |0, 0〉〈1/2, σ | + c.c.]. (7)

2.2. Green functions. Equations of motion

The following two Green functions are required for solving a
general non-equilibrium process [17]:

Gσ (t, t ′) = i�(t ′ − t)〈�0|{|1/2, σ 〉〈0, 0|t ′ , |0, 0〉〈1/2, σ |t }
× |�0〉 (8)

Fσ (t, t ′) = i〈�0|[|1/2, σ 〉〈0, 0|t ′ , |0, 0〉〈1/2, σ |t ]|�0〉 (9)

where {} and [ ] indicate anticommutator and commutator
respectively; and �0 is the wavefunction of the interacting
system in the Heisenberg representation. These Green
functions are calculated by employing the method of equations
of motion (EOM) closed up to a second order in the atom-
surface coupling parameter Vkα. This calculation provides a
very accurate description of non-equilibrium processes when
the motion equations are closed within a strict second order in
Vkα [21–24]. It is interesting to see in some detail the EOM
method applied for both Green functions written in terms of
the projector operators used to describe the hole states of the
Pd SAC:

2.2.1. Calculation of Gσ (t, t ′). The time derivative of the
Green function Gσ (t, t ′) is determined by the explicit terms of
the Hamiltonian given by equation (2) (atomic units are used
unless stated otherwise):

i
dGσ (t, t ′)

dt
= δ(t − t ′)〈�0|1/2, σ 〉〈1/2, σ |

+ |0, 0〉〈0, 0|�0〉 + (ε1/2 − ε0)Gσ (t, t ′)

+
∑

kα

Ṽ ∗
kαGσ (|0, 0〉〈0, 0|ĉkα,σ )

+
∑

kα

Ṽ ∗
kαGσ (|1/2, σ 〉〈1/2, σ |ĉkα,σ )

+
∑

kα

Ṽ ∗
kαGσ (|1/2,−σ 〉〈1/2, σ |ĉkα,−σ ) (10)

where the following notation has been used for the new Green
functions appearing in equation (10):

Gσ

(|A〉〈B|ĉkα,σ

) = i�(t ′ − t)〈�0|{|1/2, σ 〉
× 〈0, 0|t ′ , |A〉〈B|ĉkα,σ (t)}|�0〉. (11)

By taking the time derivatives of these new Green
functions and closing up to a second order in Ṽkα, the following

equations are obtained:

i
dGσ

(|0, 0〉〈0, 0|ĉkα,σ

)

dt
= δ(t − t ′)〈�0|1/2, σ 〉

× 〈0, 0|ĉkα,σ |�0〉 + εkαGσ (|0, 0〉〈0, 0|ĉkα,σ )

+ Ṽkα〈1 − n̂kα,σ 〉Gσ (t, t ′) (12)

i
dGσ

(|1/2, σ 〉〈1/2, σ |ĉkα,σ

)

dt
= −δ(t − t ′)〈�0|1/2, σ 〉

× 〈0, 0|ĉkα,σ |�0〉
+ εkαGσ (|1/2, σ 〉〈1/2, σ |ĉkα,σ )

+ Ṽkα〈n̂kα,σ 〉Gσ (t, t ′) (13)

i
dGσ (|1/2,−σ 〉〈1/2, σ |ĉkα,−σ )

dt
= −δ(t − t ′)〈�0|1/2,−σ 〉

× 〈0, 0|ĉkα,−σ |�0〉
+ εkαGσ (|1/2,−σ 〉〈1/2, σ |ĉkα,−σ )

+ Ṽkα〈n̂kα,−σ 〉Gσ (t, t ′). (14)

In the case of stationary processes (Ṽkα does not depend
on time), by Fourier transforming equations (12)–(14), and
replacing them in the Fourier transform of equation (10), we
arrive at the final expression:
{
ω − (ε1/2 − ε0) −

∑

kα

|Ṽkα|2
ω − εkα − iη

−
∑

kα

|Ṽkα|2〈n̂kα,−σ 〉
ω − εkα − iη

}
Gσ (ω)

= 〈�0|1/2, σ 〉〈1/2, σ | + |0, 0〉〈0, 0|�0〉
+

∑

kα

Ṽ ∗
kα〈�0|1/2,−σ 〉〈0|ĉkα,−σ |�0〉

ω − εkα − iη
(15)

where 〈n̂kα,−σ 〉 = f FD(εkα) is the Fermi–Dirac distribution (of
holes in this case) given by:

f FD(εkα) = 1 − 1/[1 + exp((εkα − μα)/kBT )]
= 1/[1 + exp(−(εkα − μα)/kBT )], (16)

where μα is the Fermi energy of the contact surface
(α). This is the main difference with the decoupling
approach proposed by Lacroix [23], where mean values
〈ĉ+

kα,σ ĉkα,σ 〉 are also recalculated, leading to a non-consistent
second order solution [21]. In the case of the decoupling
schemes of Meir et al [25], the correlation functions
〈�0|1/2,−σ 〉〈0, 0|ĉkα,σ |�0〉 that appear in equations (12)–
(14) are neglected, this being a good approximation only for
large values of the temperature.

The equation (15) is solved by taking into account the
norm constraint:

∑

σ

〈�0|1/2, σ 〉〈1/2, σ |�0〉 + 〈�0|0, 0〉〈0, 0|�0〉 = 1. (17)

2.2.2. Calculation of Fσ (t, t ′). The equations of motion of
Fσ (t, t ′) are obtained by following a completely analogous
procedure as for Gσ (t, t ′). But in this case we need to use
the boundary conditions given by:

Fσ

(|A〉〈B|ĉkα,σ (−∞)
) = i〈�0|[|1/2, σ 〉〈0, 0|t ′ , |A〉

× 〈B|ĉkα,σ (−∞)]|�0〉
= [2〈n̂kα,σ 〉 − 1]Gσ (|A〉〈B|ĉkα,σ (−∞)) (18)
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for arriving at the final expression:
{
ω − (ε1/2 − ε0) −

∑

kα

|Ṽkα|2
ω − εkα + iη

−
∑

kα

|Ṽkα|2〈n̂kα,−σ 〉
ω − εkα + iη

}
Fσ (ω)

= − 2π i
∑

kα

Ṽ ∗
kα

[
2〈n̂kα,−σ 〉 − 1

]〈�0|1/2,−σ 〉

× 〈0|ĉkα,−σ |�0〉δ(ω − εkα)

+ 2π i
∑

kα

∣∣∣Ṽkα

∣∣∣
2 [2〈n̂kα,σ 〉 − 1][〈n̂kα,−σ 〉 + 1]

× δ(ω − εkα)Gσ (ω). (19)

In the case of equilibrium processes, the Green function
Gσ (ω) is the only one necessary for calculating the SAC
properties. In this case, the projected density of states on the
single atom interacting with the leads,

ρσ (ω) = 1

π
Im Gσ (ω) (20)

the hole-state occupation per spin,

〈nσ 〉 = 〈�0|1/2, σ 〉〈1/2, σ |�0〉 =
∫

dω f FD(ω)ρσ (ω),

(21)
and the correlation function,

〈�0|1/2,−σ 〉〈0, 0|ĉkα,−σ |�0〉
= Ṽkα

∫
dω f FD(ω) Im

G−σ (ω)

ω − εkα − iη
(22)

are all derived from the knowledge of Gσ (ω).
While in the general case of non-equilibrium stationary

processes both Gσ (ω) and Fσ (ω) are required for calculating
the different correlation functions in the following way (spin
degeneration is being considered):

〈nσ 〉 = 1 − iFσ (t, t)

3
= 1

3

[
1 − i

2π

∫ ∞

−∞
dω Fσ (ω)

]

= 1

4π i

∫ ∞

−∞
dω [Fσ (ω) + 2Gσ (ω)] (23)

〈�0|1/2,−σ 〉〈0, 0|ĉkα,−σ |�0〉 = − i

2
F−σ (ĉkα,−σ )t ′=t

= − 1

2

∫ t

−∞
dτ Vkα[F−σ (τ, t) − [2〈n̂kα,−σ 〉 − 1]

× G−σ (τ, t)] exp(iεkα(τ − t)). (24)

2.3. General expression for the current

The current of holes from the left lead to the central region
is obtained from the time evolution of the hole occupation
number of the left lead (here we do not use atomic units):

JL(t) = e
d〈N̂L〉

dt
= e

d

dt

∑

kL,σ

〈ĉ+
kL,σ ĉkL,σ 〉

= ie

h̄

∑

kL,σ

〈[H, ĉ+
kL,σ ĉkL,σ ]〉. (25)

The average values are always referred to the �0 state. By
solving the commutator [H, n̂kL,σ ] it is found that:

JL(t) = −2e

h̄
Im

∑

kL,σ

Ṽ ∗
kα〈�0|1/2, σ 〉〈0, 0|ĉkL,σ |�0〉 (26)

and using equation (24) we can write the following expression:

JL(t) = e

h̄
Im

∑

kL,σ

Ṽkα

∫ t

−∞
dτ Ṽ ∗

kα[Fσ (τ, t)

− [2〈n̂kL,σ 〉 − 1]Gσ (τ, t)] exp(iεkL(τ − t)) (27)

which is equivalent to that found by Jauho et al [19], but
expressed in terms of the Green functions Gσ (τ, t) and
Fσ (τ, t) in the present case. For a time-independent process
the Fourier transform of this expression is valid and we can
write:

JL

(2e/h)
= 1

2
Im

∑

k,σ

|ṼkL|2i

×
∫ ∞

−∞
dω

Fσ (ω) − [2 f FD(εkL) − 1]Gσ (ω)

ω − εkL + iη
. (28)

Taking into account that in the steady state the current will
be uniform, so that JR = −JL, the current can be symmetrized
as I = (JL − JR)/2. Thus, it follows from equation (28) that:

I

(2e/h)
=

∑

σ

{
1

4

∫ ∞

−∞
dω [�L(ω) − �R(ω)] Im[Fσ (ω)

+ 2Gσ (ω)] −
∫ ∞

−∞
dω [�L(ω) f FD(ω − μL)

− �R(ω) f FD(ω − μR)] Im Gσ (ω)

}
(29)

where μL(R) are the Fermi levels of the leads L(R)μL − μR =
eV where V is the applied bias voltage and e the elemental
charge. At zero bias voltage (μL = μR), that is in equilibrium,
the following identity is valid:

Im Fσ (ω) = 2[2 f FD(ω) − 1] Im Gσ (ω) (30)

and the current I vanishes identically.
We have introduced in equation (29) the level widths:

�α(ω) = π
∑

k

|Ṽkα|2 δ(ε − εkα). (31)

By using a linear expansion of the contact surface states
φkα in atomic orbitals ϕm centered on surface sites located at
Rs positions (linear combination of atomic orbitals (LCAO)
expansion), φkα = ∑

m,Rs
ckα

m,Rs
ϕm(r − Rs), we can write that:

Ṽkα = 1/
√

5
∑

d=1−5

Vkα,d = 1/
√

5
∑

d=1−5

∑

m,Rs

ckα
m,Rs

V α
m Rs ,d

(32)

and therefore:

�α(ω) =
∑

m,n,Rs ,R′
s

�α
m,n,Rs

(ω)

= π
∑

m,n,Rs ,R′
s

V ∗α
m Rs

V α
n R′

s
ρα

m,n,Rs ,R′
s
(ω) (33)

4
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Table 1. Coupling terms, in eV, between the central atom d-states (columns) and the states on the end atom of the left (right) lead.

V L
nR0,d (V R

nR0,d) dxy dyz dz2 dxz dx2−y2

dxy −0.010 0.000 0.000 0.000 0.000
(−0.010) (0.000) (0.000) (0.000) (0.000)

dyz 0.000 0.075 0.000 0.000 0.000
(0.000) (0.075) (0.000) (0.000) (0.000)

dz2 0.000 0.000 −0.240 0.000 0.000
(0.000) (0.000) (−0.240) (0.000) (0.000)

dxz 0.000 0.000 0.000 0.075 0.000
(0.000) (0.000) (0.000) (0.075) (0.000)

dx2−y2 0.000 0.000 0.000 0.000 −0.010
(0.000) (0.000) (0.000) (0.000) (−0.010)

s 0.000 0.000 −0.199 0.000 0.000
(0.000) (0.000) (−0.199) (0.000) (0.000)

px 0.000 0.000 0.000 0.390 0.000
(0.000) (0.000) (0.000) (−0.390) (0.000)

py 0.000 0.390 0.000 0.000 0.000
(0.000) (−0.390) (0.000) (0.000) (0.000)

pz 0.000 0.000 −1.020 0.000 0.000
(0.000) (0.000) (1.020) (0.000) (0.000)

where now V α
n Rs

= 1/
√

5
∑

d=1−5 V α
n Rs ,d

V α
n Rs ,d

being the
coupling term between a d state of the central atom and the
n state of the atom positioned at Rs in lead (α), and

ρα
m,n,Rs ,R′

s
(ε) =

∑

k

ckα
m,Rs

ckα
n,R′

s
δ(ε − εkα) (34)

are the density matrix elements of the corresponding (α)

contact surface, being the site and orbital diagonal terms of
the local and partial density of states (LDOS). We are going
to consider in the calculation only the site diagonal matrix
elements (Rs = R′

s).
The same LCAO description leading to expressions such

as (33) is used for calculating the Green functions Gσ (ω)

and Fσ (ω) through equations (15) and (19) respectively. In
this form all our model calculation requires us to know is the
electronic structure of the lead surfaces given by their density
matrix elements ρα

m,n,Rs
(ε), the coupling V α

n Rs ,d
between the

d-orbitals of the central atom and the s-, p-, d-orbitals of the
atoms of the leads, and also the energy of the one hole state
in the central atom. This is given by εd = (ε1/2 − ε0) =
[E(d9) − E(d10)], with E(d10) and E(d9) the total energies
for the d atomic configurations with 10 (0) and 9 (1) electrons
(holes) respectively.

3. Results and discussion

We considered only the interaction of the central Pd atom with
the end atoms of each lead (see inset in figure 1). The distance
between the central atom and the outermost atom of each
lead is 3.47 bohr, this value corresponding to the equilibrium
distance of a Pd trimer calculated by using the Fireball
code [18]. The coupling integrals V α

n Rs ,d
, corresponding to the

Hamiltonian off-diagonal matrix elements in the atomic basis
set, were obtained by using the same code [18]. They are
shown in table 1 (in eV).

Figure 2. Projected density of states on the central atom at T = 5 K,
and for different hole-state energies: εd = 0 eV (dash–dot line),
εd = 0.55 eV (dashed line), and εd = 0.7 eV (solid line). In the inset
the same densities of states around the Fermi level are shown.

The value of the energy level of the central Pd atom
is assumed to be close to the Fermi level of the Pd-contact
surfaces. In order to analyze the sensibility to the hole energy
level position, εd values going from 0 to 0.7 eV were studied
finding in this reduced range of energy a change from a mixed
valence to a Kondo regime.

3.1. Equilibrium: local density of states on the central Pd
atom

In figure 2 one can observe the projected density of states on
the Pd central atom, ρσ (ω), for εd = 0, 0.55, 0.7 eV and
at temperature T = 5 K. A Kondo resonance appears in the
cases of εd = 0.7 and 0.55 eV, and a mixed valence behavior
corresponds to εd = 0 eV. The presence of a dip in the density
of states around the Fermi level in the case of a mixed valence

5
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Figure 3. The Kondo temperature as a function of the hole-state
energy. Full square symbols: calculated from equation (35). Dashed
line: the fitting with the exponential dependence of the flat band
approximation to equation (35), as it is explained in the text.

regime is related to the second order in the V approximation
used in this work [24]. The other resonance peaks appearing
below and above the Fermi level, at energies around 1 eV,
are introduced by the electronic structure of the two contact
surfaces.

In figure 3 we show the dependence with εd of the
temperature defined by the resonance ωK close to 0 (ωK =
TK/kB) obtained from the equation:

ω − εd − Re

[∑

kα

|Ṽkα|2
ω − εkα − iη

+
∑

kα

|Ṽkα|2〈n̂kα,−σ 〉
ω − εkα − iη

]
= 0.

(35)
For εd larger than 0.35 eV we found that our calculated

values are well fitted by the expression TK = 38 836 K ×
exp(−11.13 εd). This exponential dependence with εd is the
one found in the case of a flat wide band approximation of
the contact surfaces, TK = (D̂/kB) exp(−π |εd|/�̂), where D̂
is the half-bandwidth of the contact surfaces and the level-
width �̂ = 5�d is defined by assuming all the Vkα,d (that
is Ṽkα = √

5Vkα,d) are equal. By using the flat wide band
approximation and according to the fitting parameters, we can
characterize our system in the energy range εd > 0.35 eV
by the following effective values: D̂ = 3.35 eV and �̂ =
280 meV. The ‘effective’ d-level width �d = 56 meV is
about twice as large as the typical width values obtained
from measurements of the dI/dV peak in Kondo regimes
found in single-molecule transistors and controllable break
junctions [15, 16, 26]. The value of D̂ is close to the one used
within our model calculation: D = 5 eV (see figure 1), and
the ‘effective’ �̂ is very similar to the level-width calculated
by using equation (33) as � = [�L(ε̃d) + �R(ε̃d)] ∼ 240 meV,
where ε̃d is the atom energy level shifted by the interaction.

3.2. Non-equilibrium: current and conductance

The current is calculated by considering a bias voltage V
applied to the left lead (μL ± eV ). The out of equilibrium
Green functions Gσ (ω) and Fσ (ω) are first calculated

Figure 4. The LDOS on the outermost right and left contact atoms
are indicated with solid lines. Dashed line: the pz-band contribution;
dashed–dotted line: (px + py)-band contribution;
dashed–dotted–dotted line: dz2 -band contribution. The dashed
regions correspond to the occupied hole states, and the Fermi levels
of both leads are indicated with the horizontal solid lines. The
Im Gσ (ω)/π on the Pd central atom calculated for εd = 0.7 eV,
V = 0.1 V and T = 5 K, is also shown.

according to expressions (15) and (19) in a consistent way
with (23) and (24). Then, both these Green functions are used
in equation (29) for calculating the current I . In figure 4 the
case of μL − eV is shown, and the hole current direction
is indicated by taking into account the occupied hole states
that correspond to the dashed regions in the LDOS of the
outermost contact atoms. The Im Gσ (ω)/π calculated in the
case εd = 0.7 eV and V = 0.1 V is also included in the same
figure, showing a satellite resonance peak at energy eV [27]
and the less pronounced Kondo peak due to the asymmetry
created by the applied bias potential.

3.2.1. Conduction channels. Band state contributions. The
current I and the respective conductance G = dI/dV as
functions of the bias voltage V are shown in figures 5(a)
and (b) respectively for the case of εd = 0.7 eV and for
T = 5 K. Non-ohmic behavior of the current is observed
giving place to a non-constant conductance as a function
of V . By comparing the conductance versus V with the
energy dependence of the LDOS on the central atom shown
in figure 2, one can see that the conductance is a register of
the LDOS shape. In figure 5 is also included the current and
conductance discriminated by contact band state contributions
which according to equations (29) and (33) means considering
the current given by:

I

(2e/h)
=

∑

m,n

Im,n

(2e/h)
; (36)

where the different terms related to the m, n(=s, p, d) band
states of the contact surfaces are:

Im,n

(2e/h)
=

∑

σ,Rs

{
1

4

∫ ∞

−∞
dω [�L

m,n,Rs
(ω)

− �R
m,n,Rs

(ω)] Im[Fσ (ω) + 2Gσ (ω)]

6
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Figure 5. (a) The current as a function of the bias voltage
discriminated by surface contact band contributions for εd = 0.7 eV
and T = 5 K; s (light gray dotted line), pz (dashed line), dz2

(dashed–dotted–dotted line), (px + py) (dashed–dotted line), and the
total current (solid black line). (b) The same as in (a) but for the
conductance G = dI/dV .

−
∫ ∞

−∞
dω [�L

m,n,Rs
(ω) f FD(ω − μL)

− �R
m,n,Rs

(ω) f FD(ω − μR)] Im Gσ (ω)

}
. (37)

It is observed from figure 5 that the main contribution is
provided by the m = n = pz diagonal term which corresponds
to the largest width �α

pz ,pz ,R0
(ε) = π |V α

pz R0
|2ρα

pz ,pz R0
(ε)

according to the values of the coupling terms V α
pz R0,d

(see
table 1) and the LDOS ρα

pz ,pz R0
(ε) shown in figure 4. By

taking into account the local density of states of the leads and
the values of V α

n R0,d
, one can conclude that the more relevant

conduction channels involve the p-band states of the contact
surfaces and the dz2 , dxz and dyz orbitals of the central atom.
The same is concluded for the other εd cases. We have to
remark that (i) the LCAO expansion of the contact surface
states, (ii) the complete density matrix of the leads, and (iii) the
hopping integrals, allow us to discriminate the conduction
channels provided by the interplay between SAC and the lead
band states.

3.2.2. Current and conductance in Kondo and mixed valence
regimes. In figure 6 we show the current and conductance
within a reduced range of bias voltage values (between −0.05
and 0.05 V) for the three values of εd. The largest value of the
conductance G ∼ 0.48G0 for bias voltage close to 0 is found
in the case of εd = 0.55 eV. In the case εd = 0.7 eV this value
is 0.42G0. While in the mixed valence regime a considerably
smaller value of the conductance is found (G ∼ 0.15G0).

It is interesting to analyze the two terms of expression (29)
that contribute to the total current I . In figure 7 these two

Figure 6. (a) Current and (b) differential conductance as a function
of the bias voltage for T = 5 K and different values of the level εd:
0.7 eV (solid line); 0.55 eV (dashed line); 0 eV (dashed–dotted line).

terms are compared for the different regimes according to the
εd values. By a linear expansion in the bias voltage around
V = 0, and using the identity (30), the first and second term of
equation (29) can be written as:

[first term] � −eV

×
∑

σ

∫ ∞

−∞
dω

(
∂�L(ω)

∂ω
f FD(ω) Im Gσ (ω)

)

V =0

(38)

[second term] � eV

×
∑

σ

∫ ∞

−∞
dω

(
∂�L(ω)

∂ω
f FD(ω) Im Gσ (ω)

)

V =0

+ eV
∑

σ

∫ ∞

−∞
dω

(
�L(ω)

∂ f FD

∂ω
Im Gσ (ω)

)

V =0

. (39)

The first one takes into account the energy dependence of
the LDOS of both leads. The second term, equation (39), has a
contribution proportional to the LDOS around the Fermi level
in the case of low temperatures, and another one which is equal
to minus the only contribution to the first term (equation (38)).
This fact explains the negative conductance values found in the
case of the second term (figure 7(d)), and allows us to arrive
at the following expression of the conductance for zero bias
potential:

G (T, V = 0
)

G0

=
∑

σ

∫ ∞

−∞
dω

(
�L(ω)

∂ f FD

∂ω
Im Gσ (ω)

)

V =0

(40)

that gives G/G0 = 2π �L(0) ρσ (0) at T = 0 K.

3.2.3. Temperature behavior of the conductance. The
temperature behaviors of the density of states ρσ (ω) and of the

7
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Figure 7. The contribution of the first term given by equation (38) to the current (a) and to the differential conductance (b) as a function of the
bias voltage for T = 5 K and for the different values of εd. The contribution of the second term given by equation (39) to the current and
differential conductance is shown in (c) and (d) respectively. Solid black line: εd = 0.7 eV; gray solid line: εd = 0.55 eV; light gray solid line:
εd = 0 eV.

zero bias voltage conductance obtained in the Kondo regime
for εd = 0.7 eV are shown in figure 8 within a temperature
range from 5 to 600 K. The calculated temperature dependence
of the zero bias voltage conductance (figure 8(c)) can be well
fitted by the expression:

G(T, V = 0)

G0
= G̃0

[
1 + T 2

T̃ 2
K

(21/s − 1)

]−s

+ Ge (41)

using G̃0, T̃K, and Ge as fitting parameters and s = 0.22.
Expression (41) with s = 0.22 matches the slope of the
conductance fall-off found in numerical renormalization group
calculations for spin-1/2 Kondo systems [28]; therefore we
can conclude that our calculated conductance values follow
the same behavior with the temperature predicted by the exact
calculation. The temperature-independent offset Ge added
to the Kondo form [29] accounts for non-Kondo conduction
channels present at temperatures above T̃K [30]. In our case
we found from equation (41) T̃K � 212 K, a value in
good agreement with the corresponding temperatures around
200 K calculated by considering kBTK ∼ FWHM (full
width at half maximum) of the Kondo resonance peak of the
LDOS (figure 8(a)) or kBTK/e ∼ FWHM of the zero bias

conductance peak (figure 8(b)) at T ∼ 0 K [15]. A Pd SAC
constructed with these features corresponds to a Kondo regime
with a widened resonance Kondo peak, then the temperatures
associated with either its width or with the resonance energy
position differ greatly (see figure 3). On the other hand,
the T̃K value we obtained from the temperature dependence
of the zero bias voltage conductance is between five and
ten times larger than the corresponding values obtained from
measurements of the dI/dV peak in Kondo regimes found in
several nanodevices [15, 16, 26].

The temperature dependence of the conductance G(T,

V = 0) found in the cases of εd = 0.55 and 0 eV can be
seen in figure 9. In the εd = 0.55 eV case an increase with
the temperature conductance below T � 30 K is observed
where G gets its maximum value of 0.5G0. For T > 30 K
the conductance diminishes, reaching a value of 0.4G0 at room
temperature. The temperature dependence of the conductance
does not follow equation (41) in these εd cases. In the
mixed valence regime the conductance grows as temperature
is increased, being G = 0.15G0 at room temperature. In this
regime the dip observed in the conductance (or in the LDOS) at
the Fermi energy disappears at temperatures higher than 200 K,
and a smoother behavior is recovered [24].

8
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Figure 8. In the Kondo regime (εd = 0.7 eV): (a) the local density of states on the central atom, close to the Fermi level and for several
temperatures; (b) the differential conductance as a function of the bias voltage for the same temperature values as in (a); (c) temperature
dependence of the zero bias conductance (full circle); the dotted line is the fitting with equation (41).

4. Conclusions

The conduction through a Pd SAC between two pyramidal
structured contact surfaces of pure Pd is analyzed by assuming
the d10 to d9 charge fluctuation as the most probable one
in the single atom. This means a total spin fluctuation
between S = 0 and 1/2 within the more appropriate hole
description. Five-fold d-orbital degeneration is considered and
the EOM method closed up to a second order in the coupling
parameter is employed to solve the electronic transport
characteristics. Small variations of the Pd atom energy level
position change the correlated regime from a Kondo to a
mixed valence one. The Kondo regime found in our system
is characterized by a level-width and a Kondo temperature that
are between five and ten times larger than the corresponding
values estimated in Kondo regimes observed in mechanically
controllable break junction experiments and single-molecule

transistors [26, 15, 16]. We calculated conductance values
less than G0 in agreement with measured values in these
kinds of experiments, and also with the reported conductance
values of Rodrigues et al [5] in Pd break junctions. The
calculated conductance at zero bias voltage in the Kondo
regime falls with increasing temperature with the slope found
in numerical renormalization group calculations for spin-1/2
Kondo systems.

As previous theoretical results have shown [31], the
conductance of a small contact depends on the geometrical
and electronic configuration of the neck formed around the
center of the contact. In this sense our model calculation
is highly promising because it allows us to include all the
features of the interacting systems through the LDOS of the
contact surfaces, the atom–atom coupling integrals, and the
atom energy levels involved. Within a general treatment of
processes out of equilibrium and choosing the conduction
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Figure 9. (a) Conductance versus bias voltage for several temperatures and (b) zero bias conductance as a function of temperature for
εd = 0.55 eV. (c) and (d): the same as (a) and (b) for εd = 0 eV.

channels associated with the possible charge fluctuations
in the SAC, the contributions of the different atoms and
band states of the contact surfaces can be straightforwardly
calculated.

In summary, in this work we included the extended
properties of the leads and the local ones of the central atom
in the description of the nanodevices. The formalism we
proposed is able to incorporate all these properties in the
current calculation, and it also allows us to select the localized
dot electronic configurations that are most probable from an
energetic point of view.
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